

Politechnika Łódzka Instytut Fizyki

Laboratorium elektroniki

Ćwiczenie E10IS

Generator przebiegu prostokątnego

Wersja 1.0 (21 marca 2016)

Spis treści:

1.	Cel ćwiczenia	3
2.	Zagrożenia	3
3.	Wprowadzenie teoretyczne	4
4.	Dostępna aparatura	6
	4.1. Moduł doświadczalny	6
	4.2. Zasilacz laboratoryjny	6
	4.3. Generator funkcyjny	6
	4.4. Oscyloskop	7
5.	Przebieg doświadczenia	8
6.	Wskazówki do raportu1	1
7.	Literatura1	2
	7.1. Literatura podstawowa 1	2
	7.2. Literatura uzupełniająca 1	2
8.	Aneksy1	3
	A. Tabele rezystancji i pojemności1	3

Przed zapoznaniem się z instrukcją i przystąpieniem do wykonywania ćwiczenia należy opanować następujący materiał teoretyczny:

- 1. Właściwości idealnego i rzeczywistego wzmacniacza operacyjnego, w szczególności parametry opisujące ograniczoną szybkość pracy wzmacniacza oraz wejściowe napięcie niezrównoważenia. [1,2,5,6]
- 2. Zasada działania generatora przebiegu prostokątnego zrealizowanego jako multiwibrator astabilny przy użyciu wzmacniacza operacyjnego, bramek logicznych oraz elementów dyskretnych. [1,3,5]

1. Cel ćwiczenia

Celem ćwiczenia jest:

- 1. Zbadanie właściwości generatora przebiegu prostokątnego.
- 2. Zapoznanie się z ograniczeniami występującymi w rzeczywistym układzie generatora przebiegu prostokątnego.

2. Zagrożenia

Rodzaj	Brak	Małe	Średnie	Duże
zagrożenie elektryczne		+		
zagrożenie optyczne	+			
zagrożenie mechaniczne (w tym akustyczne, hałas)	+			
zagrożenie polem elektro-magnetycznym (poza widmem optycznym)	+			
zagrożenie biologiczne	+			
zagrożenie radioaktywne (jonizujące)	+			
zagrożenie chemiczne	+			
zagrożenie termiczne (w tym wybuch i pożar)	+			

Przewody z wtykami bananowymi są przeznaczone wyłącznie do użytku w obwodach niskiego napięcia – nie wolno podłączać ich do gniazda sieci zasilającej 230 V.

3. Wprowadzenie teoretyczne

Rozważmy działanie generatora przedstawionego na rys. 1 zakładając, że zastosowany wzmacniacz operacyjny jest idealny (zestawienie cech idealnego i rzeczywistego wzmacniacza podano m.in. w instrukcji do ćwiczenia E08 "Wzmacniacz operacyjny"). Ponadto założymy, że wzmacniacz operacyjny jest zasilany napięciem symetrycznym $+U_Z$ oraz $-U_Z$ względem masy układu generatora.

Rys. 1. Schemat układu generatora przebiegu prostokątnego.

Pętla dodatniego sprzężenia zwrotnego zrealizowana na rezystorach R_3 i R_s powoduje, że wzmacniacz operacyjny pracuje z histerezą. W stanie stabilnym wyjście takiego układu może znajdować się tylko w stanie nasycenia, tzn. przyjmuje minimalną $U_{wy,min}$ albo maksymalną $U_{wy,max}$ możliwą wartość napięcia, która wynika z napięcia zasilania oraz cech konstrukcyjnych wzmacniacza. Załóżmy, że w chwili $t_0 = 0$ doszło do przełączenia napięcia na wyjściu wzmacniacza z $U_{wy,min}$ na $U_{wy,max}$. Zmiana ta poprzez dzielnik napięcia zrealizowany na rezystorach R_3 i R_s powoduje przełączenie napięcia na wejściu "+" wzmacniacza z $U_{we,min}$ na $U_{we,max}^+$, gdzie

$$U_{\rm we,max}^{+} = \frac{R_{\rm S}}{R_{\rm S} + R_{\rm 3}} U_{\rm wy,max} , \qquad (1)$$

$$U_{\rm we,min}^{+} = \frac{R_{\rm S}}{R_{\rm S} + R_{\rm 3}} U_{\rm wy,min} \,. \tag{2}$$

Zmiana napięcia na wyjściu dociera z opóźnieniem do wejścia "–" wzmacniacza poprzez filtr dolnoprzepustowy RC zrealizowany na kondensatorze Z_1 i rezystorze Z_2 . Gdyby nie następowały kolejne przełączenia stanu na wyjściu wzmacniacza, to napięcie $u_{we}^{-}(t)$ na wejściu "–" wzrastałoby asymptotycznie do napięcia nasycenia $U_{wy,max}$

$$u_{\rm we}^{-}(t) = U_{\rm wy,max} + \left[u_{\rm we}^{-}(0) - U_{\rm wy,max} \right] e^{-t/(Z_1 Z_2)}.$$
(3)

Zauważmy, że idealny wzmacniacz operacyjny przełącza się, gdy napięcia na jego wejściach "+" i "–" są równe, zatem napięcie na wejściu "–" w chwili przełączenia t = 0 musi mieć wartość

$$u_{\rm we}^{-}(0) = U_{\rm we,min}^{+}$$
 (4)

Uwzględniając to w równaniu (3) otrzymujemy

$$u_{we}^{-}(t) = U_{wy,max} + \left(U_{we,min}^{+} - U_{wy,max}\right) e^{-t/(Z_1 Z_2)}.$$
(5)

Kolejne przełączenie stanu na wyjściu wzmacniacza nastąpi w pewnej chwili $t = T_1$, gdy dojdzie do ponownego zrównania się napięć na wejściach wzmacniacza

$$u_{\rm we}^{-}(T_1) = U_{\rm we,max}^{+}$$
 (6)

Łącząc równania (1), (2), (5) i (6) otrzymujemy związek

$$U_{\rm wy,max} + \left(\frac{R_{\rm S}}{R_{\rm S} + R_{\rm 3}}U_{\rm wy,min} - U_{\rm wy,max}\right) e^{-T_{\rm 1}/(Z_{\rm 1}Z_{\rm 2})} = \frac{R_{\rm S}}{R_{\rm S} + R_{\rm 3}}U_{\rm wy,max}, \qquad (7)$$

z którego można wyznaczyć czas trwania stanu wysokiego $U_{wy,max}$ na wyjściu generatora

$$T_1 = Z_1 Z_2 \ln \left[1 + \left(1 - \frac{U_{\text{wy,min}}}{U_{\text{wy,max}}} \right) \frac{R_{\text{S}}}{R_3} \right].$$
(8)

Analogicznie jak wyżej można wyprowadzić wzór opisujący czas trwania stanu niskiego $U_{wy,min}$ na wyjściu generatora

$$T_2 = Z_1 Z_2 \ln \left[1 + \left(1 - \frac{U_{\text{wy,max}}}{U_{\text{wy,min}}} \right) \frac{R_{\text{S}}}{R_3} \right].$$
(9)

Wzory (8) i (9) wskazują, że asymetria wyjściowych napięć nasycenia wzmacniacza prowadzi do niewielkich odchyleń współczynnika wypełnienia impulsów od 50%. Dla wielu rzeczywistych wzmacniaczy operacyjnych asymetria taka występuje także przy zachowaniu symetrii napięcia zasilającego. Ponadto, wartość ilorazu $U_{wy,max}/U_{wy,min}$ może ulegać zmianom w funkcji napięcia zasilającego, co przekłada się na niestabilność okresu oscylacji $T = T_1+T_2$ i niestabilność współczynnika wypełnienia impulsów $T_1/(T_1+T_2)$.

Za najbardziej pożądane do realizacji układu generatora należy uznać specjalne wzmacniacze operacyjne, w których graniczne napięcia wyjściowe są niemal równe napięciom zasilającym (tzw. wzmacniacze "rail to rail"). Jeżeli zapewnione jest symetryczne zasilanie, to w takich wzmacniaczach $U_{wy,max} = -U_{wy,min}$ i wówczas współczynnik wypełnienia impulsów jest równy 50% a wzór na okres oscylacji generatora upraszcza się do postaci

$$T = T_1 + T_2 = 2Z_1 Z_2 \ln\left(1 + 2\frac{R_s}{R_3}\right).$$
 (10)

4. Dostępna aparatura

4.1. Moduł doświadczalny

Panel czołowy modułu doświadczalnego przedstawiono na rys. 2. Moduł ten jest złożony ze wzmacniacza operacyjnego oraz zestawów przełączanych elementów R i C, które mogą być podłączone do wejścia "–" wzmacniacza (przełącznik Z_1), jako ujemne sprzężenie zwrotne (Z_2), jako dodatnie sprzężenie zwrotne (R_3), oraz jako obciążenie wyjścia wzmacniacza (R_L).

Rys. 2. Panel czołowy modułu doświadczalnego.

4.2. Zasilacz laboratoryjny

Symetryczne zasilanie modułu doświadczalnego zrealizowano przy użyciu zasilacza laboratoryjnego SIGLENT SPD3303D [7].

4.3. Generator funkcyjny

Generator funkcyjny DF1641B [7], który w tym ćwiczeniu będzie wykorzystywany wyłącznie jako częstotliwościomierz przebiegu doprowadzonego z zewnątrz.

4.4. Oscyloskop

W tym ćwiczeniu wykorzystuje się dwukanałowy oscyloskop cyfrowy SIGLENT SDS1052DL [7]. Oscyloskop ten umożliwia zapis całego ekranu do pliku w formacie BMP na zewnętrznej pamięci USB. Zapis odbywa się po każdym naciśnięciu przycisku PRINT a pliki z kolejnymi obrazami otrzymują automatycznie nazwy SDS00001.BMP, SDS00002.BMP,.... Zapis ekranu oscyloskopu można wykorzystać zamiast szkicowania oscylogramów. Wykonawcy ćwiczenia, którzy zamierzają skorzystać z tej możliwości, powinni przynieść na zajęcia własną pamięć USB.

5. Przebieg doświadczenia

- Połączyć obwód zgodnie ze schematem przedstawionym na rys. 3 i 4. Pomiędzy wejście "–" wzmacniacza operacyjnego i masę przyłączyć przewodem kondensator C₁ wybrany przełącznikiem Z₁, zaś pomiędzy wejście "+" wzmacniacza i masę włączyć rezystor R_{S2}. Przełącznik Z₂ ustawić w pozycji 1, przełącznik R₃ w pozycji 4, zaś przełącznik R_L w pozycji ∞. Do linii zasilania +20V, -20V i masy podłączyć zasilacz laboratoryjny, który będzie wykorzystywany do pracy w trybie szeregowym.
- Do wyjścia badanego układu podłączyć wejście CH1 oscyloskopu cyfrowego. Wykorzystując trójnik BNC albo dodatkowe gniazda na wyjściu badanego układu podłączyć także wejście INPUT częstotliwościomierza wbudowanego w generator funkcyjny.
- 3. Po uzyskaniu zezwolenia od opiekuna włączyć zasilanie urządzeń. W zasilaczu laboratoryjnym wybrać przyciskiem SER tryb szeregowy, ustawić napięcie 20V w obu połączonych kanałach i załączyć wyjścia kanałów MASTER i SLAVE. Sprawdzić czy świecą się kontrolki zasilania umieszczona w module doświadczalnym na liniach +20V i -20V.
- 4. W generatorze funkcyjnym przyciskać przycisk w sekcji COUNTER aż do zapalenia wszystkich diod świecących EXT (pomiar częstotliwości sygnału zewnętrznego), ATT (tłumik 20dB dla sygnału wejściowego) oraz LPS (filtr dolnoprzepustowy).
- 5. Przed przystąpieniem do pracy z oscyloskopem cyfrowym zalecane jest naciśnięcie przycisku DEFAULT SETUP w celu przywrócenia domyślnych ustawień oscyloskopu. Następnie ustawić oscyloskop do pracy w trybie jednokanałowym CH1 z czułością 5V/DIV i poziomem odniesienia 0V odpowiadającym środkowej poziomej linii na siatce ekranu. Upewnić się, że oscyloskop pracuje w trybie sprzęgania DC (po naciśnięciu przycisku CH1 i rozwinięciu kontekstowego menu przyciskiem MENU ON/OFF poszukać opcji Coupling DC).
- 6. Dokonać pomiarów minimalnej i maksymalnej wartości napięcia $U_{wy,min}$ i $U_{wy,max}$ na wyjściu badanego układu wartości te można odczytać z ekranu oscyloskopu bezpośrednio w postaci liczbowej po wciśnięciu przycisku MEASURE. Zanotować wyniki i ocenić, czy napięcia te można uznać za symetryczne, co pozwala na stosowanie uproszczonego wzoru (10) w obliczeniach okresu oscylacji. Naszkicować lub zapisać oscylogram wraz z podaniem wartości nastaw oscyloskopu [V/DIV] i [s/DIV].
- 7. Wykorzystując częstotliwościomierz odczytać częstotliwość *f* badanego przebiegu. Wynik pomiaru zanotować w tabeli 1. Kolumna "częstotliwość teoretyczna" w tabeli 1 może pozostać pusta do czasu opracowania sprawozdania.
- 8. Dokonać pomiarów nachylenia zboczy badanego sygnału przy użyciu oscyloskopu. W tym celu należy rozwinąć przyciskiem TRIG MENU menu ekranowe TRIGGER i wybrać zbocze narastające, następnie rozciągnąć przebieg przy użyciu pokrętła s ↔ ns w sekcji HORIZONTAL tak, by jedno wybrane ukośne zbocze przebiegu uzyskało szerokość kilku kratek na ekranie. Użycie pokrętła ↔ POSITION może pomóc w ustawieniu dogodnej pozycji zbocza przebiegu względem siatki ekranowej. W menu TRIGGER przełączyć typ zbocza na opadające i wykonać analogiczny pomiar nachylenia dla zbocza opadającego. Wyniki pomiarów zanotować w tabeli 1. Naszkicować lub zapisać odpowiednie oscylogramy.
- 9. Powtórzyć pomiary opisane w punktach 7 i 8 dla kilkunastu wybranych kombinacji ustawień przełączników Z_1 , Z_2 , R_3 i rezystancji R_S . Ustawienia przełącznika Z_1 należy zmieniać w zakresie pozycji C_1 i C_2 , ustawienia przełącznika Z_2 należy zmieniać w zakresie pozycji 1...7 (z wyłączeniem pozycji $C_1...C_3$ oraz 0 i ∞), ustawienia przełącznika

 R_3 należy zmieniać w zakresie pozycji 1...6 a rezystancję R_s należy wybierać pomiędzy wariantami R_{s1} i R_{s2} . Ilość rejestrowanych oscylogramów można ograniczyć do udokumentowania tylko charakterystycznych przebiegów bez powtórzeń, w tym co najmniej jednego dla zbocza narastającego i jednego dla zbocza opadającego.

10. Wyłączyć zasilanie i rozłączyć układ (z wyjątkiem przewodów zasilających). Zasilacz laboratoryjny może pozostać włączony do sieci – wystarczy tylko wyłączyć napięcie na wyjściach kanałów MASTER i SLAVE przyciskiem ON-OF.

Nastawy układu				Częstotliwość zmierzona	Częstotliwość teoretyczna	Nachylenie z	bocza [V/µs]
Ζ ₁ [μF]	Z_2 [k Ω]	R_3 [k Ω]	$R_{\rm S}$ [k Ω]	<i>f</i> [Hz]	f _t [Hz]	narastającego	opadającego

Tabela 1. Tabela pomiarów dla generatora drgań prostokątnych.

Rys. 3. Schemat układu do badań generatora drgań prostokątnych.

Rys. 4. Układ połączeń generatora przebiegu prostokątnego na module doświadczalnym.

6. Wskazówki do raportu

Sprawozdanie powinno zawierać:

- 1. Stronę tytułową (wg wzoru).
- 2. Sformułowanie celu ćwiczenia.
- 3. Wykaż użytej aparatury (numery inwentarzowe, modele urządzeń i wykorzystywane nastawy).
- 4. Schemat układu pomiarowego.
- 5. Stabelaryzowane wyniki pomiarów, obserwacji i obliczeń oraz wzory użyte w obliczeniach (bez wyprowadzeń). W szczególności należy obliczyć teoretyczną częstotliwość generatora drgań prostokątnych f_t jako odwrotność teoretycznego okresu oscylacji *T* danego wzorem (10). W przypadku, gdy ujemne i dodatnie napięcia nasycenia na wyjściu wzmacniacza nie spełniają przybliżonego związku $U_{wy,min} \approx -U_{wy,min}$ okres oscylacji obliczyć jako sumę czasów trwania stanu wysokiego i niskiego $T_1 + T_2$ według wzorów (8) i (9).
- 6. Wykresy oscylogramów i analizę wyników. W szczególności należy zamieścić przykładowe oscylogramy dla wyjścia generatora przebiegu prostokątnego z opisami nastaw oscyloskopu oraz elementów RC w generatorze. Porównać eksperymentalne i teoretyczne wartości częstotliwości oscylacji generatora. Podjąć próbę stwierdzenia czy ewentualne rozbieżności wartości częstotliwości zmierzonych i wyznaczonych teoretycznie wykazują jakiś związek z wartościami elementów R i C w badanym układzie. Czy rozbieżności dla niektórych nastaw rezystancji i pojemności można ocenić jako błędy grube, jeżeli wiadomo, że dopuszczalna tolerancja dla pojemności narastania i opadania zbocza przy różnych nastawach i stwierdzić czy zależą one od bieżących nastaw elementów R i C w układzie badanego generatora, czy raczej szybkości te są cechą charakterystyczną układu wzmacniacza operacyjnego. Jeżeli obsługa pracowni nie podała inaczej przyjąć, że zastosowano wzmacniacz operacyjny typu OP07 i porównać zmierzone wartości nachylenia zboczy z danymi odczytanymi z karty katalogowej wzmacniacza.
- 7. Uwagi końcowe i wnioski.

W raporcie ocenie podlegać będzie obecność i poprawność wszystkich wymienionych powyżej składników, czytelność prezentacji wyników w postaci tabel, wyników obliczeń, oscylogramów i odczytów z oscylogramów wraz z opisami oraz jakość sformułowanych wniosków. Wstęp teoretyczny nie jest wymagany i w przypadku jego zamieszczenia w raporcie nie wpłynie na ocenę.

7. Literatura

7.1. Literatura podstawowa

- [1] A. Chwaleba, B. Moeschke, "Pracownia elektroniczna. Część 2, układy elektroniczne", Wydawnictwa Szkolne i Pedagogiczne, Warszawa 1980.
- [2] Stanisław Kuta, "Elementy i układy elektroniczne. Część 1", Uczelniane Wydawnictwa Naukowo-Dydaktyczne Akademii Górniczo-Hutniczej, Kraków 2000.
- [3] B. Moeschke, G. Płoszajski, "Elektronika", Wydawnictwa Szkolne i Pedagogiczne, Warszawa 1988.
- [4] Z. Kulka, M. Nadachowski, "Liniowe układy scalone i ich zastosowanie", WKiŁ, Warszawa 1977.
- [5] P. Górecki, "Wzmacniacze operacyjne", BTC, Warszawa 2004.
- [6] M. Łakomy, J. Zabrodzki, "Liniowe układy scalone w technice cyfrowej", PWN, Warszawa 1987.

7.2. Literatura uzupełniająca

[7] Instrukcje obsługi do multimetrów, zasilacza laboratoryjnego, generatora funkcyjnego i oscyloskopu dostępne są na stronie internetowej: http://fizyka.p.lodz.pl/pl/dla-studentow/podstawy-elektroniki-laboratorium/zasoby/

8. Aneksy

A. Tabele rezystancji i pojemności

Z ₁					
Pozycja	Wartość				
1	5 kΩ				
2	10 kΩ				
3	15 kΩ				
4	$20 \text{ k}\Omega$				
5	25 kΩ				
6	$30 \text{ k}\Omega$				
8	$\infty \Omega$				
C ₁	0,1 µF				
C_2	1,0 µF				
C ₃	10 µF				

Z	22
Pozycja	Wartość
0	$0 \mathrm{k}\Omega$
1	10 kΩ
2	$20 \text{ k}\Omega$
3	50 kΩ
4	$100 \text{ k}\Omega$
5	$200 \text{ k}\Omega$
6	$500 \text{ k}\Omega$
7	1 MΩ
8	$\infty \Omega$
C1	0,1 µF
C_2	1,0 µF
C ₃	10 µF

\mathbf{R}_3		
Pozycja	Wartość	
1	20 kΩ	
2	50 kΩ	
3	100 kΩ	
4	200 kΩ	
5	500 kΩ	
6	1 MΩ	
∞	$\infty \Omega$	

R _L			
Pozycja	Wartość		
1	2 kΩ		
2	5 kΩ		
3	10 kΩ		
4	20 kΩ		
8	$\infty \Omega$		

R _s				
Rezystor	Wartość			
R _{S1}	10 kΩ			
R _{S2}	300 kΩ			
R _{S3}	10 MΩ			